Sains Malaysiana 54(2)(2025): 611-620
http://doi.org/10.17576/jsm-2025-5402-25
Constructing
Bayesian New Group Chain Acceptance Sampling Plans (BNGChSP-1) using Tangent
Angle for Probabilistic Quality Region (PQR) and Limiting Quality Region (LQR)
(Membina Pelan Persampelan Rangkaian Kumpulan
Baharu Bayesian (BNGChSP-1) menggunakan Sudut Tangen untuk Wilayah Kualiti Kebarangkalian (PQR) dan Wilayah
Kualiti Had (LQR))
MOHD AZRI
PAWAN TEH1,*, NAZRINA AZIZ1,2,
WAQAR HAFEEZ3, MD AMIN ULLAH SHEIKH4 & AIMAN FIKRI
JAMALUDIN1
1School of Quantitative Sciences (SQS), UUM
College of Arts and Sciences, Universiti Utara
Malaysia, 06010 UUM Sintok, Kedah, Malaysia
2Institute of Strategic Industrial Decision Modelling (ISIDM), Universiti Utara Malaysia, 06010 UUM Sintok,
Kedah, Malaysia
3School of Management Sciences, Jiangsu University, China
4School of Computing and Informatics, Albukhary International University, Jalan Tun Abdul Razak,
05200 Alor Setar, Kedah,
Malaysia
Received: 15
April 2024/Accepted: 22 November 2024
Abstract
This
article develops Bayesian new group chain acceptance sampling plans (BNGChSP-1)
using the tangent angle for two distinct regions, namely the probabilistic
quality region (PQR) and the limiting quality region (LQR). The BNGChSP-1, which
makes use of past knowledge about the process variation, can be used as an
alternative to traditional plans for evaluating the processes that generate the
lots. The angle for both regions is calculated by using the tangent, and the
region with a smaller angle resembles the ideal operating characteristics (OC)
curve better than the region with a bigger angle. The finding shows that
the PQR generates a smaller angle than the LQR, suggesting that the PQR more
closely resembles the ideal OC curve compared to the LQR. The smaller angle
indicates that the PQR offers greater protection to both producers and
consumers than the LQR.
Keywords:
Bayesian new group chain acceptance sampling plans (BGChSP-1); limiting quality
region (LQR); probabilistic quality region (PQR); tangent angle
Abstrak
Artikel ini membincangkan pelan persampelan Bayesian baharu penerimaan kumpulan berantai (BGChSP-1) menggunakan sudut tangen untuk dua wilayah berbeza, iaitu wilayah kualiti kebarangkalian (PQR) dan wilayah kualiti terbatas (LQR).
BGChSP-1 ini, yang menggunakan pengetahuan terdahulu tentang proses variasi, boleh digunakan sebagai satu alternatif kepada pelan tradisi untuk menentukan proses yang menjana lot. Sudut untuk kedua-dua wilayah dihitung menggunakan tangen dan wilayah dengan sudut yang lebih kecil menyerupai lengkung cirian pengoperasian (OC) yang ideal dengan lebih baik berbanding wilayah dengan sudut yang lebih besar. Penemuan ini menunjukkan bahawa PQR menjana sudut yang lebih kecil berbanding LQR, mencadangkan bahawa PQR lebih menyerupai OC yang ideal berbanding LQR. Sudut yang lebih kecil menunjukkan bahawa PQR menawarkan perlindungan yang lebih baik kepada kedua-dua pengeluar dan pengguna berbanding LQR.
Kata kunci: Pelan persampelan Bayesian baharu penerimaan kumpulan berantai (BGChSP-1); sudut tangen; wilayah kualiti kebarangkalian (PQR); wilayah kualiti terbatas (LQR)
REFERENCES
Aslam, M., Srinivasa Rao, G. & Khan, N.
2021. Single-stage and two-stage total failure-based group-sampling plans for
the Weibull distribution under neutrosophic statistics. Complex & Intelligent Systems 7: 891-900.
Aziz, N., Teh,
M.A.P. & Zain, Z. 2021. Time truncated life test for new two-sided group
chain sampling plan (NTSGChSP-1) using minimum angle method. Journal of
Physics: Conference Series 1988(1): 12117.
Bonde, A.S., Narwade,
P. & Bonde, S.V. 2022. Offline signature
verification using Gaussian weighting based tangent angle. 8th International
Conference on Signal Processing and Communication (ICSC), Noida,
India. pp. 458-462.
Casaca, J.M. & Gomes, A.S. 2006. Design of
acceptance-sampling plans under Bayesian risk. In III European
Conference on Computational Mechanics: Solids, Structures and Coupled Problems
in Engineering: Book of Abstracts Springer Netherlands. pp. 379-379.
Gimlin, D.R. & Breipohl,
A.M. 1972. Bayesian acceptance sampling. IEEE Transactions on Reliability R-21(3): 176-180. https://doi.org/10.1109/TR.1972.5215981
Hafeez, W. & Aziz, N. 2022a. Bayesian
two-sided group chain sampling plan for beta binomial distribution under
quality regions. International Journal of Quality & Reliability
Management 39(10): 2424-2437.
Hafeez, W. & Aziz, N. 2022b. Bayesian
modified group chain sampling plan for binomial distribution using beta prior
through quality region. International Journal of Productivity and Quality
Management 36(4): 502-517.
Hafeez, W. & Aziz, N. 2019. Bayesian
group chain sampling plan based on beta binomial distribution through quality
region. International Journal of Supply Chain Manageme t 8(6): 1175-1180.
Hafeez, W., Aziz, N., Zain, Z. & Kamarudin, N.A. 2022. Designing Bayesian new group chain
sampling plan for quality regions. Computers, Materials & Continua 70(2): 4185-4198.
Hu, Y., Yan, Y., Efstratiou,
C. & Vela-Orte, D. 2021. Quantitative shape
measurement of an inflatable rubber dam using an array of inertial measurement
units. IEEE Transactions on Instrumentation and Measurement 70: 1-10.
https://doi.org/10.1109/TIM.2021.3061244
Kaviyarasu, V. & Sivakumar, P. 2022. Optimization
of Bayesian repetitive group sampling plan for quality determination in
pharmaceutical products and related materials. International Journal of
Industrial Engineering Computations 13(1): 31-42.
Lange, R. & Schnor,
T. 2023. Product quality, quality control and validation. In Practical
Pharmaceutics: An International Guideline for the Preparation, Care and Use of
Medicinal Products. Cham: Springer International Publishing. pp. 767-783.
Li, R. & Li, X. 2015. A Bayesian life
test sampling plan for a Weibull lifetime distribution under accelerated type-I
censoring. First International Conference on Reliability Systems Engineering (ICRSE). pp. 1-7.
Li, X., Liu, S., Wan, S. & Hong, J.
2020. Active suppression of milling chatter based on LQR-ANFIS. The
International Journal of Advanced Manufacturing Technology 111(7):
2337-2347. https://doi.org/10.1007/s00170-020-06279-6
Pardo, S.A. 2023. Statistical Methods
and Analyses for Medical Devices. Springer Nature.
Teh, M.A.P., Aziz, N. & Zain, Z. 2021a. A
new method in designing group chain acceptance sampling plans (GChSP) for generalized exponential distribution. International
Journal of Quality & Reliability Management 38(5): 1116-1129.
Teh, M.A.P., Aziz, N. & Zain, Z. 2021b.
New group chain acceptance sampling plans (NGCHSP-1) using minimum angle method
for generalized exponential distribution. Sains Malaysiana 50(4): 1121-1129.
Zeng, H., Zhang, L. & Bovik, A.C. 2018. Blind image quality assessment with a
probabilistic quality representation. 25th IEEE International Conference on
Image Processing (ICIP). pp. 609-613.
*Corresponding author; email:
mohd.azri.pawan@uum.edu.my
|