Sains Malaysiana 54(2)(2025): 611-620

http://doi.org/10.17576/jsm-2025-5402-25

 

Constructing Bayesian New Group Chain Acceptance Sampling Plans (BNGChSP-1) using Tangent Angle for Probabilistic Quality Region (PQR) and Limiting Quality Region (LQR)

(Membina Pelan Persampelan Rangkaian Kumpulan Baharu Bayesian (BNGChSP-1) menggunakan Sudut Tangen untuk Wilayah Kualiti Kebarangkalian (PQR) dan Wilayah

Kualiti Had (LQR))

 

MOHD AZRI PAWAN TEH1,*, NAZRINA AZIZ1,2, WAQAR HAFEEZ3, MD AMIN ULLAH SHEIKH4 & AIMAN FIKRI JAMALUDIN1

 

1School of Quantitative Sciences (SQS), UUM College of Arts and Sciences, Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia
2Institute of Strategic Industrial Decision Modelling (ISIDM), Universiti Utara Malaysia, 06010 UUM Sintok, Kedah, Malaysia
3School of Management Sciences, Jiangsu University, China
4School of Computing and Informatics, Albukhary International University, Jalan Tun Abdul Razak, 05200 Alor Setar, Kedah, Malaysia

 

Received: 15 April 2024/Accepted: 22 November 2024

 

Abstract

This article develops Bayesian new group chain acceptance sampling plans (BNGChSP-1) using the tangent angle for two distinct regions, namely the probabilistic quality region (PQR) and the limiting quality region (LQR). The BNGChSP-1, which makes use of past knowledge about the process variation, can be used as an alternative to traditional plans for evaluating the processes that generate the lots. The angle for both regions is calculated by using the tangent, and the region with a smaller angle resembles the ideal operating characteristics (OC) curve better than the region with a bigger angle. The finding shows that the PQR generates a smaller angle than the LQR, suggesting that the PQR more closely resembles the ideal OC curve compared to the LQR. The smaller angle indicates that the PQR offers greater protection to both producers and consumers than the LQR.

 

Keywords: Bayesian new group chain acceptance sampling plans (BGChSP-1); limiting quality region (LQR); probabilistic quality region (PQR); tangent angle

 

Abstrak

Artikel ini membincangkan pelan persampelan Bayesian baharu penerimaan kumpulan berantai (BGChSP-1) menggunakan sudut tangen untuk dua wilayah berbeza, iaitu wilayah kualiti kebarangkalian (PQR) dan wilayah kualiti terbatas (LQR). BGChSP-1 ini, yang menggunakan pengetahuan terdahulu tentang proses variasi, boleh digunakan sebagai satu alternatif kepada pelan tradisi untuk menentukan proses yang menjana lot. Sudut untuk kedua-dua wilayah dihitung menggunakan tangen dan wilayah dengan sudut yang lebih kecil menyerupai lengkung cirian pengoperasian (OC) yang ideal dengan lebih baik berbanding wilayah dengan sudut yang lebih besar. Penemuan ini menunjukkan bahawa PQR menjana sudut yang lebih kecil berbanding LQR, mencadangkan bahawa PQR lebih menyerupai OC yang ideal berbanding LQR. Sudut yang lebih kecil menunjukkan bahawa PQR menawarkan perlindungan yang lebih baik kepada kedua-dua pengeluar dan pengguna berbanding LQR.

 

Kata kunci: Pelan persampelan Bayesian baharu penerimaan kumpulan berantai (BGChSP-1); sudut tangen; wilayah kualiti kebarangkalian (PQR); wilayah kualiti terbatas (LQR)

REFERENCES

Aslam, M., Srinivasa Rao, G. & Khan, N. 2021. Single-stage and two-stage total failure-based group-sampling plans for the Weibull distribution under neutrosophic statistics. Complex & Intelligent Systems 7: 891-900.

Aziz, N., Teh, M.A.P. & Zain, Z. 2021. Time truncated life test for new two-sided group chain sampling plan (NTSGChSP-1) using minimum angle method. Journal of Physics: Conference Series 1988(1): 12117.

Bonde, A.S., Narwade, P. & Bonde, S.V. 2022. Offline signature verification using Gaussian weighting based tangent angle. 8th International Conference on Signal Processing and Communication (ICSC), Noida, India. pp. 458-462.

Casaca, J.M. & Gomes, A.S. 2006. Design of acceptance-sampling plans under Bayesian risk. In III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering: Book of Abstracts Springer Netherlands. pp. 379-379.

Gimlin, D.R. & Breipohl, A.M. 1972. Bayesian acceptance sampling. IEEE Transactions on Reliability R-21(3): 176-180. https://doi.org/10.1109/TR.1972.5215981

Hafeez, W. & Aziz, N. 2022a. Bayesian two-sided group chain sampling plan for beta binomial distribution under quality regions. International Journal of Quality & Reliability Management 39(10): 2424-2437.

Hafeez, W. & Aziz, N. 2022b. Bayesian modified group chain sampling plan for binomial distribution using beta prior through quality region. International Journal of Productivity and Quality Management 36(4): 502-517.

Hafeez, W. & Aziz, N. 2019. Bayesian group chain sampling plan based on beta binomial distribution through quality region. International Journal of Supply Chain Manageme t 8(6): 1175-1180.

Hafeez, W., Aziz, N., Zain, Z. & Kamarudin, N.A. 2022. Designing Bayesian new group chain sampling plan for quality regions. Computers, Materials & Continua 70(2): 4185-4198.

Hu, Y., Yan, Y., Efstratiou, C. & Vela-Orte, D. 2021. Quantitative shape measurement of an inflatable rubber dam using an array of inertial measurement units. IEEE Transactions on Instrumentation and Measurement 70: 1-10. https://doi.org/10.1109/TIM.2021.3061244

Kaviyarasu, V. & Sivakumar, P. 2022. Optimization of Bayesian repetitive group sampling plan for quality determination in pharmaceutical products and related materials. International Journal of Industrial Engineering Computations 13(1): 31-42.

Lange, R. & Schnor, T. 2023. Product quality, quality control and validation. In Practical Pharmaceutics: An International Guideline for the Preparation, Care and Use of Medicinal Products. Cham: Springer International Publishing. pp. 767-783.

Li, R. & Li, X. 2015. A Bayesian life test sampling plan for a Weibull lifetime distribution under accelerated type-I censoring. First International Conference on Reliability Systems Engineering (ICRSE). pp. 1-7.

Li, X., Liu, S., Wan, S. & Hong, J. 2020. Active suppression of milling chatter based on LQR-ANFIS. The International Journal of Advanced Manufacturing Technology 111(7): 2337-2347. https://doi.org/10.1007/s00170-020-06279-6

Pardo, S.A. 2023. Statistical Methods and Analyses for Medical Devices. Springer Nature.

Teh, M.A.P., Aziz, N. & Zain, Z. 2021a. A new method in designing group chain acceptance sampling plans (GChSP) for generalized exponential distribution. International Journal of Quality & Reliability Management 38(5): 1116-1129.

Teh, M.A.P., Aziz, N. & Zain, Z. 2021b. New group chain acceptance sampling plans (NGCHSP-1) using minimum angle method for generalized exponential distribution. Sains Malaysiana 50(4): 1121-1129.

Zeng, H., Zhang, L. & Bovik, A.C. 2018. Blind image quality assessment with a probabilistic quality representation. 25th IEEE International Conference on Image Processing (ICIP). pp. 609-613.

 

*Corresponding author; email: mohd.azri.pawan@uum.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous